Table of Contents

General description ... 4
Installation ... 4
 Locating the sensor .. 4
 Installation guidelines 5
 Wiring ... 6
Operation ... 7
 Start-up .. 7
 Calibration ... 7
Maintenance ... 9
Specifications ... 10
Warranty ... 11

Calibration Technologies 866-394-5861
General Description

The GasGuard O3 sensor is a +24 VDC, three-wire, 4/20 mA sensor for ozone which utilizes proven electrochemical sensor technology for fast and accurate detection. The 0 – 1 ppm detection range of the GasGuard O3 provides real-time continuous monitoring of ozone concentrations accurately down to 0.5 ppm without false alarms.

The GasGuard O3 provides an industry standard linear 4/20 mA output signal compatible with most gas detection systems and PLCs. The output signal is not affected by drastic temperature and moisture variations that occur during daily process cycles.

The transmitter circuit board is sealed in potting compound, protecting sensitive electronic components and copper tracing from corrosion. The specially vented chemical-resistant polycarbonate enclosure protects the sensor from accidental damage, weather and direct hose-hits from clean-up crews.

Installation

Locating the sensor

One of the most important considerations when installing GasGuard O3 sensors is that they must be easily accessible for calibration and maintenance.

For optimum personnel protection (representative concentration reading that an employee would be exposed to), mount the sensor at a height in the breathing zone of the employees. It would typically be about five feet off the ground, which also allows easy access. As a general rule of thumb, try to mount sensors within 20 feet of potential leak sources.

Caution: Remove protective cap.
The sensor is shipped with a cap installed over the electrochemical cell to preserve cell life. The cell will not detect ozone gas with this cap installed. Remove cap and discard during installation.
Installation Guidelines:

- Remove and discard protective cell cap
- Always mount the sensor vertically.
- Must be easily accessible for calibration and maintenance.
- Mount the sensor close to the potential leak source.
- For optimum personnel protection, mount sensor in the “breathing zone” (4’ – 5’ above floor).
- Take air movement and ventilation patterns into account.
- To prevent electrical interference, keep sensor and wire runs away from mercury vapor lights, variable speed drives, and radio repeaters.
- Protect sensor from physical damage (forklifts, etc.).
- If mounting sensor outdoors, consider prevailing wind direction and proximity to the most likely source of leaks. Protect the sensor from sun and rain as much as possible.
- Never mount the sensor in CA (controlled atmosphere) rooms because normal atmospheric levels of oxygen are required for operation.
- For highly critical locations more than one sensor should be installed in each room.
- Mount sensor enclosures through the mounting holes as shown in Figure 1. Use the supplied self-tapping screws for mounting on sheet metal surfaces.

Figure 1: Mounting dimensions
Wiring
Electrical wiring must comply with all applicable codes.

Electrical Power: 24 VDC regulated, 250 mA.
Output: Linear 4/20 mA output. Monitoring equipment may have a maximum input impedance of 700 ohms.
Cable Recommendation: 20/3 shielded cable (General Cable C2525A or equivalent). Length of cable to sensor should be no greater than 1,500 feet.
Monitoring: Monitoring equipment must be configured to indicate a fault if the signal is below 1 mA. All signals over 20 mA must be considered high gas concentrations. Alarm setpoints should not be lower than 10% of full-scale range.

Wiring Guidelines:
- Always use three conductor, insulated, stranded, shielded copper cable.
- Do not pull sensor wiring with AC power cables. This can cause electrical interference.
- If cable runs cannot be made without a splice, all splice connections should be soldered.
- Ground the shield at the main control panel. Connect the shield wire in the sensor terminal block labeled SHLD.
- Use only the existing conduit hole for connections to the sensor.

Figure 2: Wiring diagram
Operation

Start-up
Before applying power, make a final check of all wiring for continuity, shorts, grounds, etc. It is usually best to disconnect external alarms and other equipment from the sensor until the initial start-up procedures are completed. After power-up, allow at least 1 hour for the system to stabilize before testing the sensors. Because sensors are normally located at a distance from the main unit, the test time required and accuracy of the response checks will be improved if two people perform the start-up procedures and use radio contact.

Start-Up Test:
1) One person exposes each sensor to the target gas.
2) The second person stays at the control unit to determine that each sensor, when exposed to the gas fumes, is connected to the proper input and responds, causing appropriate alarm functions.

Calibration
The GasGuard O3 Sensor comes factory calibrated and should require only minimal adjustments after installation. There are two pots on the preamp that are used for calibration.
Note: Never measure sensor output in mA. Always use mVDC or VDC voltmeter settings.

Zero Calibration: After the unit is installed and has been powered up for a minimum of 12 hours, the unit can be zero calibrated by the following:
- Apply Zero Air gas at 0.5 to 1.0 L/min.
- Adjust the zero pot until the sensor outputs 40 mV from Test [-] to Test [+] (see Figure 3).

Span Calibration: Never adjust the span pot without an ozone generator. If span adjustment is required, the following procedure will span the unit:
- Perform zero adjustment before spanning.
- Apply span gas at 0.5 to 1.0 L/min.
- Sensor should react to gas within 15 seconds
- Once the output signal has peaked (or five minutes maximum) adjust the span pot until the correct output is achieved (see Figure 3).

Note: If an ozone generator is not available, the unit can be calibrated with chlorine. The relative response of the ozone sensor to chlorine is 1.33. To calibrate with chlorine, apply 0.5 ppm and adjust output to 14.64 mA.

Note: Below are a few response characteristics which may be an indication that the gas sensor is at or near the end of its useful life. If any of these are observed, the cell should be replaced:
- Slow response to / recovery from calibration gas.
- Failure of the output to reach 50% of the calibration gas value prior to span adjustment.
- Unable to achieve correct output during span adjustment.
Figure 3: Sensor board components and zero/span adjustments
The GasGuard O3 was designed for long life and minimal maintenance. For proper operation it is essential that the test and calibration schedule be adhered to. Calibration Technologies recommends the following maintenance schedule

Maintenance Guidelines:

- The sensor is shipped with a factory calibration. Sensor should be calibrated 6 months from purchase date.
- Calibrate the detector at least once every 6 months.
- Calibration should be performed with a certified ozone gas generator or chlorine gas generator. Chlorine generators are available for field calibrations. Contact Calibration Technologies for more details.
- In highly critical areas, a response test should be performed between calibrations to verify proper sensor response and alarm functions. The response test is not required if multiple electrochemical sensors are installed in the same room.
- All tests and calibrations must be logged.

Sensor Life: These electrochemical cells are extremely reliable, but several things can cause the cell chemicals to become depleted including:
- a period of time
- exposure to high temperatures
- continuous, long term exposure to ozone

When the cell becomes depleted, the unit will give no indication of failure other than that the sensor will not respond. For this reason it is absolutely essential that these sensors be calibrated on a regular basis. Typical sensor life is two to three years. When the cell becomes depleted, a replacement cell can be obtained from Calibration Technologies. Simply unplug the cell’s ribbon cable from the transmitter, pull the old cell from the spring clip, discard the old cell and replace it with a new one. The sensor can be calibrated after a 12 hour warm-up period.
Specifications

Detection Principle: Electrochemical
Detection Method: Diffusion
Gases: Ozone (O3)
Ranges: 0/1 ppm
Output Signal:
Linear 4/20 mA (max input impedance: 700 Ohms)
Power Supply: +24 VDC, 250 mA
Response Time:
T₅₀ = less than 60 seconds
T₉₀ = less than 120 seconds
Accuracy:
+/- 5% of value, but dependent on calibration gas
accuracy and time since last calibration
Zero Drift: Less than 0.1% of full-scale per month, non-
cumulative
Span Drift: Application dependent, but generally less
than 3% per month
Linearity: +/- 0.5% of full-scale
Repeatability: +/- 1% of full-scale
Wiring Connections:
3 conductor, shielded, stranded, 20 AWG cable
(General Cable C2525A or equivalent) up to 1500 ft.
Enclosure: Injection-molded NEMA 4X polycarbonate
housing. Captive screw in hinged lid. For non-
classified areas.
Temperature Range: 0°F to +120°F (-18°C to +49°C)
Humidity Range: 5% to 100% condensing
Dimensions: 7.5” high x 6.5” wide x 3.75” deep
Weight: 2 lbs
Limited Warranty & Limitation of Liability

Calibration Technologies, Inc. (CTI) warrants this product to be free from defects in material and workmanship under normal use and service for a period of one year (gas sensor covered for six months), beginning on the date of shipment to the buyer. This warranty extends only to the sale of new and unused products to the original buyer. CTI’s warranty obligation is limited, at CTI’s option, to refund of the purchase price, repair, or replacement of a defective product that is returned to a CTI authorized service center within the warranty period. In no event shall CTI’s liability hereunder exceed the purchase price actually paid by the buyer for the Product.

This warranty does not include:

a) routine replacement of parts due to the normal wear and tear of the product arising from use;
b) any product which in CTI’s opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation, handling or use;
c) any damage or defects attributable to repair of the product by any person other than an authorized dealer or contractor, or the installation of unapproved parts on the product

The obligations set forth in this warranty are conditional on:

a) proper storage, installation, calibration, use, maintenance and compliance with the product manual instructions and any other applicable recommendations of CTI;
b) the buyer promptly notifying CTI of any defect and, if required, promptly making the product available for correction. No goods shall be returned to CTI until receipt by the buyer of shipping instructions from CTI; and

c) the right of CTI to require that the buyer provide proof of purchase such as the original invoice, bill of sale or packing slip to establish that the product is within the warranty period.

THE BUYER AGREES THAT THIS WARRANTY IS THE BUYER’S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CTI SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT OR RELIANCE OR ANY OTHER THEORY.